quickest descent - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

quickest descent - translation to ρωσικά

CURVE CONNECTING TWO POINTS SUCH THAT A BEAD SLIDING FRICTIONLESSLY IN A UNIFORM GRAVITATIONAL FIELD MOVES TO THE OTHER ENDPOINT THE FASTEST
Brachistochrone problem; Brachistochrone; Curve of fastest descent; Brachystochrone; Brachistochrone Problem; Brachistrone; Brachistocrone; Quickest Descent Curve; Curves of quickest descent; Curve of quickest descent; Fastest descent
  • Bernoulli Challenge to Newton 1
  • The curve of fastest descent is not a straight or polygonal line (blue) but a [[cycloid]] (red).
  • Brachistochrone Bernoulli Direct Method
  • Diagrams for Wikipedia entry regarding Galileo's Conjecture

quickest descent      

математика

наискорейший спуск

curve of quickest descent         
кривая быстрейшего спуска
curve of quickest descent         

математика

кривая наискорейшего спуска

Ορισμός

Brachystochrone
·noun A curve, in which a body, starting from a given point, and descending solely by the force of gravity, will reach another given point in a shorter time than it could by any other path. This curve of quickest descent, as it is sometimes called, is, in a vacuum, the ·same·as the Cycloid.

Βικιπαίδεια

Brachistochrone curve

In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time. The problem was posed by Johann Bernoulli in 1696.

The brachistochrone curve is the same shape as the tautochrone curve; both are cycloids. However, the portion of the cycloid used for each of the two varies. More specifically, the brachistochrone can use up to a complete rotation of the cycloid (at the limit when A and B are at the same level), but always starts at a cusp. In contrast, the tautochrone problem can use only up to the first half rotation, and always ends at the horizontal. The problem can be solved using tools from the calculus of variations and optimal control.

The curve is independent of both the mass of the test body and the local strength of gravity. Only a parameter is chosen so that the curve fits the starting point A and the ending point B. If the body is given an initial velocity at A, or if friction is taken into account, then the curve that minimizes time differs from the tautochrone curve.

Μετάφραση του &#39quickest descent&#39 σε Ρωσικά